会员   密码 您忘记密码了吗?
1,653,050 本书已上架      购物流程 | 常见问题 | 联系我们 | 关于我们 | 用户协议

有店 App


当前分类

商品分类

浏览历史

当前位置: 首页 > 简体书 > 物理學經典(影印版):量子成像
物理學經典(影印版):量子成像
上一张
下一张
prev next

物理學經典(影印版):量子成像

作者: MIKHAIL I.KOLOBOV
出版社: 世界圖書出版公司北京公司
出版日期: 2016-03-01
商品库存: 点击查询库存
以上库存为海外库存属流动性。
可选择“空运”或“海运”配送,空运费每件商品是RM14。
配送时间:空运约8~12个工作天,海运约30个工作天。
(以上预计配送时间不包括出版社库存不足需调货及尚未出版的新品)
定价:   NT330.00
市场价格: RM59.33
本店售价: RM52.80
购买数量:
collect Add to cart Add booking
详细介绍 商品属性 商品标记
內容簡介

量子成像是量子光學的一個重要分支,是研究在光場量子特性下所能達到的光學成像極限的問題。利用量子光學的研究方法和技術,量子成像研究了圖像的形成、處理和檢測問題,其靈敏度和解析度超越了經典成像的極限。該書涵蓋了許多研究量子成像的專家所獲得的重要理論和實驗結果,而歐共體將該項目作為研究綱領。


作者介紹

Mikhail I.Kolobov (M.I.科洛博夫,法國)是國際知名學者,在物理學界享有盛譽。本書凝聚了作者多年科研和教學成果,適用于科研工作者、高校教師和研究生。


目錄

1 Quantum Imaging with Continuous Variables
Luigi A.Lugiato,Alessandra Gatti,and Enrico Brambilla
1.1 Introduction
1.2 The Concepts of Squeezing and of Entanglement with Continuous Variables, and Their Intrinsic Connection
1.2.1 Prototype Model Ⅰ
1.2.2 Prototype Model Ⅱ
1.3 Intrinsic Relation Between Squeezing and Entanglement
1.4 Spatially Multimode Parametric Down—Conversion: Some Topics in Quantum Imaging
1.4.1 Spatially Multimode Versus Single—Mode Squeezing:Optical Parametric Down—Conversion of Type—Ⅰ
1.4.2 Near—FieldlFar—Field Duality in Type—Ⅰ OPAs
1.4.3 Detection of Weak Amplitude or Phase Objects Beyond the Standard Quantum Limit
1.4.4 Image Amplification by Parametric Down—Conversion (Type—Ⅰ)
References

2 Spatial Entanglement in Optical Parametric Down—Conversion
Alessandra Gatti,Enrico Brambilla,Ottavia Jedrkiewicz,and Luigi
2.1 Introduction
2.2 Simultaneous Near—Field and Far—Field Spatial Quantum Correlation in the High—Gain Regime of Type—Ⅱ Parametric Down—Conversion
2.2.1 Propagation Equations for the Signal—Idler Fields and Input—Output Relations
2.2.2 Near— and Far—Field Correlations in the Stationary and Plane—Wave Pump Approximation
2.2.3 Near— and Far—Field Correlations: Numerical Results in the General Case
2.2.4 Far—Field Correlations
2.2.5 Near—Field Correlations
2.3 Detection of Sub—Shot—Noise Spatial Correlations in High—Gain Parametric Down—Conversion
2.3.1 Detection of the Spatial Features of the Far—Field PDC Radiation by Means of the CCD
2.3.2 Experimental Set—Up for Spatial—C.orrelations Measurements
2.3.3 Detection of Quantum Spatial Correlations: Spatial Analogue of Photon Antibunching in Time
2.4 Multiphoton, Multimode Polarization Entanglement in Parametric Down—Conversion

3 Quantum Imaging in the Continuous—Wave Regime Using Degenerate Optical Cavities
Agnes Maitre,Nicolas Treps,and Claude Fabre
3.1 Introduction
3.2 Classical Imaging Properties of Degenerate ODtical Cavities
3.2.2 Cavity Round—Trip Transform
3.2.3 Image Transmission Through an ODtical Cavity
3.3 Theory of Optical Parametric Oscillation in a Degenerate Cavity
3.3.2 Quantum Properties
3.4 Experimental Results
3.4.1 Classical Effects: Observation of Optical Patterns
3.4.2 Observation of Quantum Correlations in Images.

4 Quantum Imaging by Synthesis
of Multimode Quantum Light
Nicolas Treps,Hans A.Bachor,Ping Koy Lam,and Claude Fabre
4.1 Introduction
4.2 Quantum Noise in an Arravlike Detection
4.3 Implementing a Sub—Shot—Noise Array Detection
4.4 The Quantum Laser Pointer
4.5 Optical Read—Out
4.6 Measuring a Signal in an Optimal Way
4.7 Conclusion
References

5 Ghost Imaging
Alessandra,Gatti, Enrico Brambilla,Morten Bache,and Luigi A.Lugiato
5.1 Introduction
5.2 General Theory of Ghost Imaging with Entangled Beams
5.3 Wave—Particle Aspect
5.4 Spatial Average in Ghost Diffraction: Increase of Spatial Bandwidth and of Speed in Retrieval
5.5 Ghost Imaging with Homodyne Detection
5.6 Debate: Is Quantum Entanglement R,eally Necessary for Ghost Imaging?
5.7 Ghost Imaging by Split Thermallike Beams: Theory(15—17)
5.7.1 Analogy Between Thermal and Entangled Beams in Ghost Imaging (15—17)
5.7.2 Resolution Aspects
5,7.3 Relations with the Classic Hanburry—Brown and Twiss Correlation Technique (37)
5.7.4 Correlation Aspects
5.7.5 Visibility Aspects
5.7.6 Some Historical Considerations
5.7.7 Rule—of—Thumb Comparison Between Entangled and "Thermal" Ghost Imaging
5.8 Ghost Imaging with Split Thermal Beams: Experiment
5.8.1 High—R,esolution Ghost Imaging (23)
5.8.2 The Ghost Diffraction Experiment: Complementarity Between Coherence and Correlation (24)
References

6 Quantum Limits of Optical Super—Resolution
Mikhail I Kolobov
6.1 Super—Resolution in Classical Optics
6.2 Quantum Theory of Super—Resolution
6.2.1 Quantum Theory of Optical Imaging
6.2.2 Quantum Theory of Optical Fourier Microscopy
6.3 Quantum Limits in Reconstruction of Optical Objects
6.3.1 Reconstruction of Classical Noise—Free Objects
6.3.2 Reconstruction of Objects with Quantum Fluctuations
6.3.3 Point—Spread Function for Super—Resolving Reconstruction of Objects
6.4 Squeezed—Light Source for Microscopy with Super—Resolution

7 Noiseless Amplification of Optical Images
Mikhail I.Kolobov and Eric Lantz
7.1 Introduction
7.2 Traveling—Wave Scheme for Amplification of Images
7.3 Optimum Phase Matching for Parametric Amplification
7.4 Quantum Fluctuations in the Amplified Image and Conditions for Noiseless Amplification
7.5 Experimental Demonstration of Temporally Noiseless Image Amplification
7.6 Experiment on Spatially Noiseless Amplification of Images
References

8 Opticallmage Processing in Second—Harmonic Generation
Pierre Scotto, Pere Colet, Adriatn Jacobo, afnd Maxi San Miguel
8.1 Introduction
8.2 Image Processing in Second—Harmonic Generation at a Classical
8.2.1 Frequency Up—Conversion of an Image
8.2.2 Contrast Enhancement and Contour Recognition
8.2.3 Noise Filtering Properties
8.3 Quantum Image Processing in Type—Ⅰ Second—Harmonic Generation
8.3.1 Field—Operator Dynamics
8.3.2 Quantum Image Processing
8.4 Quantum Image Processing in Type—Ⅱ Second—Harmonic Generation
8.4.1 Propagation Equations
8.4.2 Linearly y—Polarized Pump: Frequency Addition Regime
8.4.345°—Linearly Polarized Pump: Noiseless Up—Conversion and Amplification
References

9 Transverse Distribution of Quantum Fluctuations in Free—Space Spatial Solitons
Eric Lantz,Nicolas Treps, and Claude Fabrre
9.1 Introduction
9.2 General Method
9.2.1 Propagation Equations for the Fluctuations
9.2.2 Green's Function Approach
9.2.3 Correlations Between the Photocurrents
9.3 Spatial Solitons: Mean Values
9.3.1 X(3) Scalar Spatial Soliton
9.3.2 X(3) Vector Spatial Soliton
9.3.3 X(2) Spatial Soliton
9.4 Squeezing on the Total Beam
9.4.1 X(3) Scalar Spatial Soliton
9.4.2 X(3) Vector Soliton: Total Beam Squeezing and Correlation Between Polarizations
9.4.3 X(2) Spatial Solitons
9.5 Local Quantum Fluctuations
9.5.1 X(3) Scalar Spatial Soliton
9.5.2 Intensity Squeezing by Spatial Filtering
9.5.3 X(3) Vector Soliton
9.6 Quantum Correlations Between Field Quadratures at Different Points
9.6.1 X(3) Scalar Spatial Soliton
9.6.2 Vector Solitons
9.6.3 X(2)Spatial Solitons
9.7 Conclusion
References
……
10 Quantum Fluctuations in Cavity Solitons
11 Quantum Holographic Teleportation and Dense Coding of Optical Images
12 Orbital Angular Momentum of Light
Index